
COP 4600: Intro To OS (Android OS) Page 1 © Dr. Mark Llewellyn

COP 4600 – Summer 2014

Introduction To Operating Systems

Android Operating System

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop4600/sum2014

COP 4600: Intro To OS (Android OS) Page 2 © Dr. Mark Llewellyn

Android Operating System
• Android is design to run mobile devices, specifically smart phones

and tablets.

• It is built on a Linux foundation and relies on Linux to perform

some of the most fundamental tasks, including management of main

memory, processors, device drivers, and network access.

• The most customizable part of Android is its user interface, which

can be arranges by each user to include almost any configuration of

applications (apps).

• Apps are programmed in Java using a software development kit

(SDK) that’s available free for downloading.

• Like Linux, Android is an open source OS, publishing key

components of its source code (but not all of it). While not as open

as Linux, it is much more so than the OS that runs Apple’s mobile

devices.

COP 4600: Intro To OS (Android OS) Page 3 © Dr. Mark Llewellyn

A Brief History Of Android
• Andy Rubin was a co-founder of Danger Inc., and he formed the

team that created the Android OS to power his company’s new

cell phone, called the Sidekick, which was a precursor to today’s

smartphones.

• The key challenge that they faced was to create a complete

computing environment that could successfully manipulate the

phone despite battery power limitations, a small CPU, and reduced

memory space. Using Linux as the base, the team was able to

create a multi-level system that integrated Linux to perform user

actions via unique apps from the phone’s screen.

• Google purchased Android in 2005 and Rubin joined the

company. In 2013, Google CEO Larry Page announced that

“more than 750 million devices had been activated globally with

more than 2.5 billion apps downloaded from Google Play.”

COP 4600: Intro To OS (Android OS) Page 4 © Dr. Mark Llewellyn

A Brief History Of Android
• As of this month (July 2014), Google Play currently lists more

than 1.3 million apps available. Currently about 25,000 new apps

appear every month.

• With each new release of Android, the source code is released so

that manufacturers and developers can prepare their installation

and customized software. You can obtain the source code at:

https://source.android.com/.

https://source.android.com/

COP 4600: Intro To OS (Android OS) Page 5 © Dr. Mark Llewellyn

A Brief History Of Android

Year Release Code Name Features

2008 Version 1.0 First product available to the

public

2009 Version 2.0 Éclair Based on Linux kernel 2.6.29

2011 Version 3.0 Honeycomb A tablet-only version based on

Linux kernel 2.6.36

2011 Version 4.0 Ice Cream

Sandwich

Based on Linux kernel 3.0.1

2012 Version 4.1 Jelly Bean Based on Linux kernel 3.0.31

2013 Version 4.4 KitKat Currently available

2014 Version L ? Available for developers now.

COP 4600: Intro To OS (Android OS) Page 6 © Dr. Mark Llewellyn

Design Goals
• The goals of the Android system are focused on the user

experience in a mobile environment, using a touch screen and

connecting to networks through either telephony (using 3G and

4G currently) or Wi-Fi.

• The following page defines the overall design goals of Android.

This was taken directly from :

http://developer.android.com/design/get-started/creative-

vision.html

http://developer.android.com/design/get-started/creative-vision.html

COP 4600: Intro To OS (Android OS) Page 7 © Dr. Mark Llewellyn

Design Goals

COP 4600: Intro To OS (Android OS) Page 8 © Dr. Mark Llewellyn

Memory Management
• Memory management is handled by the Linux kernel, with the

help of several software modifications (including shared memory

allocators) to help Android work successfully on mobile devices

that are typically built with a limited amount of main memory and

slower CPUs.

• Therefore, Android apps are explicitly designed to use resources

only when they are needed, and to require minimal resources when

they are dormant. That is, they are built to reside in memory in a

sleep-like state while consuming minimal resources.

• The next page provides an illustration of that shows the Android

software stack is built on a Linux kernel, which manages all

device drivers (only a few illustrated here).

COP 4600: Intro To OS (Android OS) Page 9 © Dr. Mark Llewellyn

Memory Management

Android Software Stack

COP 4600: Intro To OS (Android OS) Page 10 © Dr. Mark Llewellyn

Memory Management
• Once an app is opened, it remains resident in main memory, even

when it appears that it has been closed.

• By remaining in main memory, an app can usually open quicker

when it is called in the near future. However, this does not mean

that these open apps are not monitored.

• Android uses a LRU algorithm to keep track of each resident

process and when it was most recently called. Then, if memory

space should become scarce, a low memory killer (called LMK)

acts to free up memory by removing the processes that have

remained dormant the longest.

• In this way, users are not encouraged to manually “force stop”

applications that they are not currently working with; in fact,

doing so will cause these apps to take longer to open.

COP 4600: Intro To OS (Android OS) Page 11 © Dr. Mark Llewellyn

Processor Management
• Android processor management requires four key objects:

manifest, activities, tasks, and intents.

• Manifest: a file that holds essential information that the system

must have before it can run an application. The manifest includes

all of the permissions that the app must have before it can begin as

well as the permissions that other apps must have to work with

that app’s components. This information is held in a file called:
AndroidManifest.xml

• Activity: is the application component that defines the user

interface screen that the individual uses to interact with the app,

including all the actions that can be performed. In general, an app has a

collection of activities, including some that are unique to the app as well

as activities from other cooperative apps.

COP 4600: Intro To OS (Android OS) Page 12 © Dr. Mark Llewellyn

Processor Management
• Task: is defined in Android as “sequence of activities a user follows

to accomplish a goal”. Therefore, a task can consist of activities

from just one app or from several apps. A task that runs in the

background is called a service, such as a media player that continues

to play even as the user moves to another app and another activity.

• Intent: is the mechanism that one app uses to signal to another app

that its cooperation is requested to accomplish something. This

allows apps to call on one another as needed to meet a user’s

request. For example, if the user requests that an app integrate a

photo, that app can call on the camera app to make itself ready to

take the desired picture. Once taken, the digital image will be sent to

the referring app without the need to notify the user that one app is

pausing while another executes, and then pausing so the first app can

be resumed.

COP 4600: Intro To OS (Android OS) Page 13 © Dr. Mark Llewellyn

Processor Management
Activity States

• Each application can have one to many activities and each one is

responsible for maintaining its processing state. This is illustrated

below:

COP 4600: Intro To OS (Android OS) Page 14 © Dr. Mark Llewellyn

Activity States

• There are several states that an activity goes through from creation to

destruction. The flow of these states is very similar to the process

lifecycle we examined when dealing with process management

earlier this semester.

• Created state: transient state when the activity has just begun

• Started state: software initialization begins and the first screen can be

drawn. Generally considered the main screen.

• Resumed state (running state): activities execute until they are interrupted

by another activity or a user command.

• Paused state: a stop for an activity that is interrupted and ready to go into a

“background” mode

• Stopped state: activities disappear from the user’s view. Subsequently,

activity may be terminated or it may be recalled.

• Destroyed state: formal indication that the activity is terminated. It will be

removed completely from system memory. Background activities closed

properly to prevent memory leaks

COP 4600: Intro To OS (Android OS) Page 15 © Dr. Mark Llewellyn

Process Management
• Whenever a new activity is begins, it replaces the activity that was

previously called and its activity state is moved to a data structure

called the “back stack”.

• This stack is loaded and unloaded using a LIFO scheme. Each time

that an app is replaced by another, such as when the user opens mail

first and then opens the calendar, the status of the replaced app (mail)

is moved into the stack so that the new app (calendar) can take over

the screen. The contents of the stack are loaded in chronological

order from the first one that was replaced to the last one replaced.

• Later, when a user wants to backtrack to the previously viewed apps

and presses the “back” button on the screen, it stops the current

activity (calendar) and replaces it with the screen for the most

recently opened app (mail) and restores that app’s status so that it

appears as it was left.

COP 4600: Intro To OS (Android OS) Page 16 © Dr. Mark Llewellyn

Process Management
• This stacking process is shown in more detail on the next slide,

which represents an example where a user opens four apps in the

following order: clock (to check an appointment time), maps (to

verify a location), phone (to confirm the appointment), and camera

to take a picture.

• When each app is opened, it causes the status of the previously active app to be

stored in the back stack. For example, when the phone app is opened, then the

status of the maps app is moved to the back stack.

• After the photo is taken and the user presses the back button, the camera app

disappears from the screen and the next-to-last app (the phone app) is restored

with the same status (same contact and phone number) it was displaying when it

was stopped.

• Pressing the back button once again causes the phone app to disappear and the

maps app to replace it, with its status restored. Finally, pressing the back button

again causes the maps app to disappear and the clock to open.

COP 4600: Intro To OS (Android OS) Page 17 © Dr. Mark Llewellyn

Process Management

The last-in, first-out (LIFO) scheme moves the activity status of the current app into

the back stack when that app is replaced by another one. Later, it restores each app

in reverse order each time the user presses the back button.

COP 4600: Intro To OS (Android OS) Page 18 © Dr. Mark Llewellyn

Process Management
• As activities move through their individual lifecycles, the system

relies on “callbacks” for changes in states.

• Examples of these callbacks are shown on the next page.

• For example, when the callback “onCreate()” is received, it causes

the activity to be created. Then when the callback “onStart()” is

received, that activity is moved from the Created state to the

Started state. Likewise, the onPause() callback causes the activity

to move from the Resumed state to the Paused state (this would

happen when the user moves from the currently displayed app to

another app).

COP 4600: Intro To OS (Android OS) Page 19 © Dr. Mark Llewellyn

Detailed view of the Activity Lifecycle and

the system callbacks that move an activity

from one state to another.

COP 4600: Intro To OS (Android OS) Page 20 © Dr. Mark Llewellyn

Process Management
• To keep the Android system running smoothly, app developers

need to remain aware of the many ways in which an app can be

terminated because the effect that doing so can have on resource

allocation.

• For example, an app can be ended from any of three states:

Paused, Stopped, or Destroyed. If the app is Paused after it was

allocated an exclusive resource, such as a network connection or

access to a critical device, these critical resources should be

deallocated until it is time for the app to resume. To do otherwise

is to risk the app closing prematurely (from the Paused state) still

holding exclusive control of the resource. In other words, the app

designer needs to make certain that each app ends gracefully

whenever the user terminates it, no matter what state it happened

to be in at the time.

COP 4600: Intro To OS (Android OS) Page 21 © Dr. Mark Llewellyn

Device Management

Four device display variables that directly

impact the design of user interface screens.

COP 4600: Intro To OS (Android OS) Page 22 © Dr. Mark Llewellyn

Device Management
• To aid designers, Android has introduced a fifth factor, called a

density-independent pixel (dp), which is the equivalent to one

physical pixel on a 160 dpi screen.

• App designers are encouraged to create interfaces using the dp

unit. In this way, device and app designers can allow the system

to perform the necessary scaling for each screen based on its size,

resolution, orientation, and density.

• For example, if a designer is creating a simple game to run on all

Android phones, the game could end up running on screens

ranging from 240x320 dpi to 1920x1030 dpi in portrait mode (and

(320x240 to 103x1920 in landscape mode). If the designer wrote

the app using dpi units, the system would require coding for every

possible screen combination. By writing the app using dp units,

the same code can be used to display on every screen size.

COP 4600: Intro To OS (Android OS) Page 23 © Dr. Mark Llewellyn

Device Management
• Note that using dp units does not absolve the designer from stating

in the app’s manifest file the types of screens that are supported.

• Given the wide variation in screen configurations, designers may

choose to create four different user interfaces to accommodate

Android’s four categories of screen sizes:

– Extra-large screens: at least 960dp x 720dp

– Large screens: at least 640dp x 480dp

– Normal screens: at least 470dp x 320dp

– Small screens: at least 426dp x 320dp

• The figure on the next page illustrates Android’s four size

categories and how their representative densities compare.

COP 4600: Intro To OS (Android OS) Page 24 © Dr. Mark Llewellyn

Device Management

Comparison of the four screen sizes supported by Android and

the different densities for each size: low dpi (ldpi), medium dpi

(mdpi), high dpi (hdpi), and extra high dpi (xhdpi).

COP 4600: Intro To OS (Android OS) Page 25 © Dr. Mark Llewellyn

Device Management
• The ultimate goal of app designers in Android is to give every user

the impression that the app was designed specifically for the user’s

device, and not merely stretched or shrunk to accommodate

various screens.

• Screen requirements and how to develop apps for them is a subject

that is sure to change frequently.

• Current details about the Android user interface screen support can

be found at:

http://developer.android.com/guide/practices/index.html

http://developer.android.com/guide/practices/index.html

COP 4600: Intro To OS (Android OS) Page 26 © Dr. Mark Llewellyn

Battery Management
• One of the key considerations for any OS running on a mobile

device is management of the power supply, especially the battery.

• Battery usage information for an Android device is available from

the Settings tab, as shown on the next page.

• To improve battery availability, users may choose to leave certain

functions turned off until they actually need them, such as GPS,

Bluetooth communications, background file syncing, live

wallpaper, and haptic (vibration) feedback.

• In addition, using Wi-Fi instead of telephony can save power.

• Battery management is a field of its own and doesn’t fall into the

realm of OS. However, it is an ever-changing field which will

have big impacts on future mobile devices.

COP 4600: Intro To OS (Android OS) Page 27 © Dr. Mark Llewellyn

Battery Management

This device has 1 hour, 32 minutes of battery time remaining. This display

also indicates that the screen is consuming 73 percent of the device’s

battery resources at a very bright setting and that the Android operating

system is using 5 percent.

COP 4600: Intro To OS (Android OS) Page 28 © Dr. Mark Llewellyn

File Management
• Routine file control in Android OS is managed by Linux at the

kernel level. Therefore, each app has its own User ID, the part of

the OS that is the user’s own protected mode and that allows it to

manage files it creates and executes. Therefore, if the app’s

developer does not explicitly expose it to other apps, no other apps

are allowed to read or alter its files.

• However, if two apps are signed with the same digital certificate,

then the two get the same User ID. As a result, the apps are

allowed to share data, but this practice also means that the

developer must take special precautions to make sure that they

work correctly with each other.

COP 4600: Intro To OS (Android OS) Page 29 © Dr. Mark Llewellyn

File Management
• Users many need supplementary apps to perform the hand-on file

manipulation that one might expect from a more robust OS.

• Currently, most “out of the box” Android devices gain the ability

to move, copy, and otherwise manipulate files on the device and

flash card, only by installing supplementary apps.

COP 4600: Intro To OS (Android OS) Page 30 © Dr. Mark Llewellyn

Security Management
• The Android OS has a multiple tiered security structure designed

to protect the user’s data, protect the system’s resources (including

networking resources), and provide application isolation to

prevent intentional damage or inadvertent vulnerabilities from a

malicious or poorly designed app.

• There are two primary classes of Android apps: those that are pre-

installed (such as calendar, camera, email, contacts, browser, and

so on) and those installed by the user.

• The greatest vulnerabilities stem from those that are user installed.

COP 4600: Intro To OS (Android OS) Page 31 © Dr. Mark Llewellyn

Security Management
Permissions

• One critical aspect of Android security is user-defined

permissions. Because the person who allows installation of an app

is explicitly asked to grant permission for this app to access certain

resources on the device, it is the individual who holds the key to

device security.

• Before installing an app, the list of permissions is available for

review, such as the display as shown on the next page. The app in

question in the figure has requested access to only four

permissions.

COP 4600: Intro To OS (Android OS) Page 32 © Dr. Mark Llewellyn

Security Management

This application requested these four permissions. The

app is not installed until the user agrees to allow access.

COP 4600: Intro To OS (Android OS) Page 33 © Dr. Mark Llewellyn

Security Management
Permissions

• User granted permissions, a few of which are listed on the next

page, are listed in the app’s manifest.

• A survey done in 2012 found that the majority (72%) of the

400,000 apps that were examined, requested permissions that

appeared to be outside of their apparent operational requirements.

• When that number is combined with the ability of the individuals

to connect their personal devices to their organization’s network,

this can produce a wide range of vulnerabilities.

COP 4600: Intro To OS (Android OS) Page 34 © Dr. Mark Llewellyn

Security Management

Before installing an app, the user is presented with a list of all the

permissions requested by that application. A few are listed here.

COP 4600: Intro To OS (Android OS) Page 35 © Dr. Mark Llewellyn

Security Management
Device Access Security

• Android offers several levels of access protection so that users can

choose how much protection they want for each mobile device,

and these options can range from highest security to none, as

shown in the table on the next page.

• Strong passwords are the highest built-in level of security, though

even stronger security can be added through a high-security app.

– The assumption is that the passwords chosen are not trivial and are not

written down in plain sight.

– Google recommends a two-step process to build a strong password

consisting of numbers, letters, and symbols.

• Start with a random phrase that is easy to remember.

• Then insert random numbers, capital letters, and special characters to make it harder to

guess.

– More can be found at: http://www.google.com/safetycenter/

http://www.google.com/safetycenter/

COP 4600: Intro To OS (Android OS) Page 36 © Dr. Mark Llewellyn

Security Management

Each mobile device can be set to an appropriate level of the security.

COP 4600: Intro To OS (Android OS) Page 37 © Dr. Mark Llewellyn

Security Management
Device Access Security

• An alternative to password protection is Android’s pattern

recognition tool, which is similar to a graphical password.

• To set one up, the user chooses Settings, opens the Lock Screen

security option, chooses Pattern to reach the screen shown on the

next page, and follows the instructions to connect the nine dots in

a certain pattern – one that can easily be remembered.

• Should an intruder attempt to use brute force to guess the pattern,

the default setting allows only a limited number of incorrect tries

before licking the device and requiring an alternative mode of

access.

COP 4600: Intro To OS (Android OS) Page 38 © Dr. Mark Llewellyn

Security Management

To establish the pattern lock security option, the device owner traces a single

line to connect the dots, such as the one shown here. Later, to unlock the

device, the same pattern must be retraced exactly.

COP 4600: Intro To OS (Android OS) Page 39 © Dr. Mark Llewellyn

Security Management
Device Access Security

• Facial recognition is not currently considered a strong access

control tool on Android because of several vulnerabilities.

• Expect future versions of Android to improve this area and it may

ultimately become a strong access control mechanism.

Encryption Options

• Android offers encrypted storage options, as shown in the figure

on the next page. Once an account, setting, application, data,

picture or other file is encrypted, the user will be required to enter

a valid password with every sign-on.

• This option is also available from the Settings/Security menu.

COP 4600: Intro To OS (Android OS) Page 40 © Dr. Mark Llewellyn

Security Management

For higher security, encryption is offered. It’s a time-consuming

option to invoke, so the device owner should have the device

plugged in or at least fully charged before starting it.

